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ABSTRACT

A person spends a significant portion of time driving a vehicle. This time serves several applications, such as
unobtrusive health monitoring with sensors that are mounted inside the car. Such a car can perform regular
medical checkups or other tasks such as drunk driver detection. For such tasks, driver behavior monitoring is
essential. Several approaches utilize data from different modalities and sensors. Video-based recognition is used
increasingly and usually combined with deep learning. In this work, we propose an end-to-end transfer learning
approach using temporal pyramidal networks (TPN’s) on top of a ResNet-50 backbone that is pre-trained on the
Kinetics400 dataset. We further perform a comparative analysis with the inflated 3D ConvNet network (I3D).
We aim to boost training efficiency while improving accuracy as compared to previous work. The extracted
videos from the DriveAct dataset have been captured from a single near-infrared (NIR) camera mounted on
the rear-view mirror. Using these videos for training and evaluation, we achieve the best validation accuracy of
75.74%. This work has several potentials to be extended, generalizing to a multi-camera setup and combining
multi-modal data to increase accuracy significantly. It further serves as a baseline for in-car health monitoring.

Keywords: Continuous health monitoring, Action recognition, Motion detection, Smart car

1. INTRODUCTION

Driver-based recognition systems have been researched for some time now, as they make vehicles safer for travel
and more intelligent [1, 2]. These systems have focused primarily on aspects of the drivers’ fitness to drive by
performing tasks such as yawning detection [3, 4]. Consequently, the algorithms focus on specific body parts,
such as the face or the hands [5]. More recently, there has been an interest in algorithms for the person’s entire
body to perform tasks like action recognition, which supports health applications as well as autonomous driving
[6].

Several approaches for driver’s action recognition have drawbacks, such as obtrusive sensor mounting require-
ments or susceptibility to interferences with external signals such as Wi-Fi [7]. Hence, research utilizing video
feeds has increased. Video-based methods are relatively simple to implement and use off-the-shelf cameras.

We broadly group typically performed human actions inside a car into two categories: One-time and prolonged
actions. One-time activities take less than three seconds to complete. Putting on a seatbelt or closing a door
are some examples. Prolonged actions last longer. Examples are just sitting or reading the newspaper, which
involve the subject sitting still in more or less the same position.

Historically, one hurdle towards driver’s action recognition has been the lack of adequate or relevant datasets
due to the specific nature of the car environment as opposed to an in-the-wild dataset. More recently, however,
the increased interest has led to the creation of comprehensive datasets which allow for advancements in this
area. In this work, we use the DriveAct dataset by Martin et al. [8].

The complete dataset consists of videos recorded using cameras mounted in different locations inside the car like
the steering wheel, rear-view mirror, etc. For some views, the dataset has videos recorded in other modalities
like NIR, RGB, etc. The annotations to the dataset are differentiated into three different levels of abstraction
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(a) Sitting still (b) Talking on phone
Figure 1: Two example classes from the Drive&Act dataset [8]

which are: scenarios/tasks, fine-grained activities within these tasks, and atomic action units, which form the
lowest level of abstraction (Fig. 1).

Furthermore, Martin et al. experimented with several action recognition models, training them on the dataset.
They trained the models C3D [9], Inflated 3D ConvNet (I3D) [10], and P3D ResNet [11] in an end-to-end fashion
entirely from scratch. They also used the 3D body pose to classify the action performed as an alternative and
performed a comparative analysis versus the end-to-end process. The fine-grained activity annotations of the
dataset containing 34 action classes achieved the best validation accuracy of 69.57% on the 13D model trained
end-to-end.

Yang et al. [12] proposed an action detection method based on transfer learning. They utilized a temporal
pyramidal network (TPN) on top of a ResNet-50 backbone that was pre-trained for efficiency on the Kinetics400
dataset [13]. The TPN is a recent innovation with promising results in several action recognition benchmarks.
According to Yang et al., visual tempo characterizes the dynamics and the temporal scale of an action and mod-
eling such visual tempos of different actions facilitates their recognition. TPN gains most of its improvements
on action classes that have large variances in their visual tempos.

In our case, some tasks such as simply sitting involve very still movements as opposed to actions like opening
the car door, which are more sudden. These examples indicate that the TPN model might be suitable for in-car
action recognition and application to continuous health monitoring while driving.

2. MATERIAL AND METHODS

In this section, we introduce our single-person driver action recognition method followed by details on the
dataset used for training and evaluation. To reduce complexity, we utilize the GluonCV application programming
interface (API) [14].

2.1 Algorithm

The entire algorithm is composed of three major steps (Fig. 2). To summarize, in the first step, a fixed number
of frames is selected for each video. Subsequently, we preprocess the extracted clips and, in the last step, train
the model.
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Figure 2: Video processing pipeline. The ellipses and rectangles denote input/output and algorithmic steps,
respectively.

2.1.1 Fixed length frame extraction

Building upon our classification of actions performed inside a car, we can intuitively see that the classification
of both one-time or prolonged tasks can be accomplished by clips of size at most 2-3 seconds. This translates to
60-90 input video frames using the 30 fps camera utilized by [8]. From these input frames, we randomly extract
clips of 64 consecutive frames to standardize the length of all input videos. In case we have less than 64 frames,
we add frames containing no semantic information at the end. Finally, we sample every other frame from the 64
frame clip to create a final 32 frame clip for each input video.

2.1.2 Extracted clip preprocessing

We perform preprocessing to make all the clips compatible. All frames are resized to 256 x 256 pixels using
bilinear interpolation. Grey scales are normalized using the mean and standard deviation calculated from across
all images in the ImageNet dataset [15].

2.1.3 Model architecture and training

The model architecture utilised is the standard TPN architecture [12] with the inflated ResNet as the 3D
backbone of the network, and the original ResNet as the 2D backbone. Instead of training the entire model from
scratch, however, we adopt a transfer learning approach by only learning the weights for the final layer and using
pre-trained weights for all the previous layers. The final layer of the model is modified to yield one of 34 classes.
During training, for a fair comparison, we use one of the training-validation splits as in [8]. In the end, we have
7256 videos for the training and 1288 videos for the validation. We feed the clips into the model for training and
classification.

2.1.4 Implementation details

We speed up the training by using mini-batches of size 4. The model was trained for 100 epochs using the Adam
optimizer [16] provided by PyTorch with a learning rate of 0.01, a momentum of 0.9, and a weight decay of 107°.
We chose all the hyper parameters according to their default values.

2.1.5 Dataset

In this work, we used the NIR data from the camera mounted on the car’s driver side for the best view of the
driver’s actions and the fine-grained annotations consisting of 34 classes. The annotated classes preserve a clear
semantic meaning. The dataset includes videos that show drivers’ interactions with the car, i.e. opening or
closing the door, fastening the seatbelt or pressing the automation button, as well as interactions with objects.
Examples for the latter are talking on the phone, working on a laptop or opening a backpack. Further, as
mentioned earlier, there is significant variance between the lengths for which different tasks are performed which
is reflected in the training videos. The list of all fine-grained activity classes used and their exact duration
statistics is available here.
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2.1.6 Evaluation metric

We used a simple accuracy metric to evaluate our model during training and validation, defined by the ratio of
correctly classified frames to the total number of classified frames.

3. RESULTS

Within the dataset, each video is assigned a label from the activity shown in Figure 8. The model training was
carried out for a total of 100 epochs. The final training accuracy obtained is 99.13% with its evolution as in
Figure 3. As we can observe, the training accuracy saturates and does not improve much further on increasing
the number of training epochs. During inference, we achieve a maximum validation accuracy of 75.74% as shown
in Figure 4. Table 1 shows the comparison between our results and those obtained by Martin et al.
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Figure 3: TPN Training Accuracy Plot
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Figure 4: TPN Validation Accuracy Plot

4. DISCUSSION AND OUTLOOK

We achieved a significant improvement over the results by Martin et al. (69.57%). We further plan to add the
results obtained on training the I3D model using transfer learning and compare them to our current results.
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Table 1: Comparison of results

Model Training Accuracy Validation Accuracy
Random Classification Model - 2.94
Martin et al. (Drive&Act) Not Known 69.57
TPN + ResNet-50 99.13 75.74
I3D + ResNet-50 To Be Added To Be Added

In this work, we have advanced the action recognition performed inside the environment of a smart car by
applying the recently designed TPN to our task of in-car health monitoring, and further comparing it to other
SOTA models in previous works. Combining the particular preprocessing techniques and the transfer learning
approach has not yet been explored so far.

In this work, we proposed a new methodology for action recognition within the environment of a smart car.
We attempted to extend recent works by modifying their approach and experimenting with a different machine
learning model. We further demonstrated proof of concept through our results on the Drive&Act dataset.
However, we observe a slight overfitting problem, which we aim to mitigate. There are also several avenues for
future work. We plan to incorporate videos from multiple views integrating their predictions using our approach
and then combining their results. Further, we also want to experiment with videos recorded in different modalities
and perform a comparative analysis. Additionally, tweaking the different hyper parameters to potentially better
outcomes is also a viable option.
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